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TECHNICAL NOTE L207

EFFECT OF A STRINGER ON THE STRESS CONCENTRATION
DUE TO A CRACK IN A THIN SHEET

By J. Lyell Sanders, Jr.
SUMMARY

A coefficient is obtalned for determining the effect of a reinforcing
stringer on the stress concentration factor at the tip of a crack in a
thin sheet. The results are given for the case in which the stringer is
intact and for the case in which the stringer is broken. In the first case
the stress concentration factor for the stringer is also given.

INTRODUCTION

Some damage to aircraft structures due to fatigue or accident is sta-
tistically inevitable; thus, the fall-safe concept has entered into design
considerations. One of the problems associated with this concept is the
determinstion of the static strength of cracked parts. The mechanism of
static failure of a structure weskened by the presence of a crack is by
no means completely understood at the present time. However, an engi-
neering theory which seems to hold some promise has recently become
avaellable (ref. 1). In this theory the significant quantity determining
the strength of the cracked structure 1s the stress concentration factor
at the end of the crack (corrected for plasticity and the so-called size
effect). The fundamental informstion needed to espply the method is the
stress concentration factor obtained from elasticity theory.

For msny configurations an exact solution for the stress distribu-
tion from the theory of elastlicity is very difficult to obtain., However,
a considerable amount of informstion that is useful and adequate for
practical applications has been obtained by making various idealizations
and simplificetions of the problems. As a further contribution, the
results contained in the present paper were obtained.

The problem considered in the present paper 1ls the determination of
the relieving effect of a reinforeing stringer on the stress concentration
at the tip of a crack in a thin sheet. The crack runs perpendicular to
the stringer and extends an equal distance on either side of it. The
state of stress in the sheet far away from the crack is a tensile stress
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parallel to the stringer. The stress concentration factor for a crack in
a thin sheet may be determined from a known formula. (See ref. 1.) The
factor by which this known result can be multiplied in order to correct
for the presence of the reinforcing stringer is determined in the present
paper. The stress concentration factor in the stringer due to the crack
and the correction factor for the crack in the case in which the stringer
is broken are also found in the analysis. The results are presented
graphically and in tebular form.

SYMBOLS
A cross-sectional ares of stringer
B function defined in equation (30)
b length of crack on one side of stringer
C ratio between stress concentration factors for & cracked sheet

with and without a stringer

c* corresponds to C in case where stringer 1s broken
E Young's modulus for sheet materisl

Egt Young's modulus for stringer meterial

F analytic function defined in equation (11)

G shear modulus for sheet materisal

H stress function (see egs. (2))

Io, I modified Bessel functions of first kind
Ko, Ky modified Bessel functions of second kind
Lgs Ly Struve funections of imeginary argument

P load in stringer at lts intersection with crack

F load concentretion factor for stringer, PE/cAE .

R( ), I( ) real part of and imsginary part of
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8 dummy varlable of integration
t sheet thickness
u displacement in x; -direction

X, ¥ dimensionless coordinates (see egs. (4))

X1, V1 physical coordinates

z complex variable, x + iy

¥4 Euler's constent, 0.57722

€, 1 complex variables

6 dummy variable

A similarity parameter, 2btE/AE

g direct stress in sheet at infinity

Oy; T direct and shesr stresses in sheet

Ux,o direct stress in sheet with a crack but without a stringer
) analytic function, @ + i¥

@y corresponds to ¢ for a sheet without a stringer
) dimensionless stress function (see egs. (4))

¥ dimensionless displacement (see egs. (4))

Primes indicate differentiation and the notation ~ Iindlcates an
asymptotic reletlonship.

ANATYSIS

Two simplifications of the problem are made in the present analysis.
One simplification is that the sheet 1s assumed inextensional in the
direction parsllel to the crack. This orthotropic sheet was introduced
by Hildebrand (ref. 2) and greatly simplifies the equations of plene
stress. The other simplification is to treat the crack as a straight-
line segment and assume that the strength of the stress singulsrity at
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the end of the idealized crack is & measure of the stress concentration
due to & thin crack with a small, but nonzero, radius of curvature at its
end. The effect of the stringer on the strength of the stress singulsarity
is found by solving the two similar problems of the cracked sheet with and
without the stringer. The desired correction factor previously defined is
taken to be the ratio of the two strengths thus found.

Formulation of Boundary-Value Problem

The thin sheet with a crack and attached stringer is represented in
figure 1. According to the orthotropic plane-stress theory of reference 2,
the stress-displacement relations are

3
- g Qu_
Gx_EaXl
3

5 (1)
T=G-._u'_.
Byl/

where oy and T are the direct and shear stresses, respectively, E

is Young's modulus, G is the shear modulus, snd u is the displecement
in the xj-direction. The displacement in the yj-direction is zero from

symetry. Equilibrium is satisfied if the stresses are given in terms of
a stress function H as follows:

. = %y‘if
\ (2)

;i

T axl

’

An equation of equllibrium for the stringer may be obtalned by con-
sidering the portion of the stringer from the origin to x; as a free

body. (See fig. 2.) The displacements in the stringer must be the same
es those in the sheet along the x)-axis; hence, from equation (1) the

E o
stress in the stringer must be oy —%E, where Egy 1is Young's modulus
for the stringer material. The required equilibrium equation is thus
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P = XA—ﬁ+2f T axy
o
- a st OH atfxlaﬁ dx
E ayl 0 X, 1
=AE——Et SE _ otm (3)
Vi

where P 1s the load in the stringer at x; =0, A is the cross-
sectional area of the stringer, +t 1is the thickness of the sheet, and
H(0,0) has arbitrarily been chosen as zero.

Introduce dimensionless variebles and parameters as follows:

N

xl=/_%_bx O’x=0'%
- _ G o
yl—by T_-Egg
_ 1 (x)
H = obf P = EE
O'AEst
u=_5&¢ '7\=2ltF:
fE_C-— ABgt

where o 1s the direct stress in the sheet at Infinity.

The following equations may now be obtained by eliminating oy and
T from equations (1) and (2):

éﬁ:i §é=_§l (5)
ox Jy oy ox

which are the Cauchy-Rliemann equaetions. It follows that
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$+ 1y = o(x + 1y) = o(2) (6)

where © i1is an analytic function of the camplex variable z.

Because of symmetry, a boundary-value problem mey be formulated
for the upper half-plene only. From equation (3)

# -7 (v

S 0) (7)

Since oy =0 on the crack

A

(8)

e
nA
I—.l

=0 (x=0,0

From symmetry, u =0 on the line (x = 0, y 2 1) and at the point
(x = 0, y = 0); therefore,

<
]
O
NN
"
non
°
%)
nny
i.._l
L
Py
N

Since oy—>0 and T—>0 at infinity,

O ~ -iz (z—>=)  (10)

Solution of Boundary-Value Problem

The boundary-value problem just formulated for ¢ is of the mixed
type. However, the problem mey be reduced to the more familiar Dirichlet
type by introducing a new unknown function F deflned as follows:

I

o' + iA® + 1P

@f; i N,) ; 1@34 - - F) (11)

The boundary-value problem for F is as follows:

F(z)
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R(F) =0 (x=0, y>1) (12)
I(F) =0 (v = 0)1

(13)
I(F) = F (x =0, y<l)j
F ~ Az ' (z—w) (k)

The solution for F 1s found to be
i ‘/2 1-1 ;——”
F=_i£log._z_+_—_+7\za+l+'—-9——— (15)

where the arbitrary constant C 1is real and the radical is positive on
the positive real axis. From equation (11), it follows that

&' + iN0 = F - 1P (16)

Solving for ¢ with the use of the relationship ¢ ~ -1z at infinity
glves

¢=-§-i +1+e'i7‘zf< log fe2+ 1 +§1'l }C'I'C])ei?\gdg (17)
t2 +

Interpretation of C.- The stress concentration factor P for the
stringer and the coefficient C are as yet unknown. Before proceeding
to determine them as functions of A, it is convenient to show that C
itself is the ratio between the stress concentration factors for a
cracked sheet with and without a stringer.

The solution to the problem of determining the complex stress function
for the cracked sheet without a stringer may be obtained from equations (15)
and (16) by letting A—>w, which is equivalent to letting Eg+A—>0

2btE
Egtd

since A = . The result is
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o, = —1422 + - (lé)

The stress Tield is determined from the derivative of the stress
function, which in the neighborhood of z =1 (the tip of the crack)
behaves as follows:

O '~ (z—>1 1
o e z—>i) (19)

There is evidently a singularity at z = i. For the cracked sheet with
a stringer,

o N — (z—>1) (20)

J2iiz - 1)

88 is evident from equation (16) since @(1) = O from equations (8)
end (9). On the line (x =0, y >1), T =0 and oy = i0¢'. Thus, at
the tip of the crack,

= ——~ C (21)

and C 1s evidently the required ratio.

Determination of € and P.- The two conditions aveilable for
determining the two unknowns P and C as functions of A are

¢(0)

o} (22)

J

which follow from equations (8) and (9). When applied to equation (1T7),
these conditions yield

o(1)

- — '2 .
¢(0)=-§—i+f-§ﬁlog§+l‘l+1§+c eMat = o (23)

s Je2 + )
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. _ A P §2+l—l it + C iINg _
(i) = §+e jj; log q + l;2+le at = 0 (24)

By use of equation (24), equation (23) becomes

_ o/ R
(e'7‘-1)+jv -?,‘tllog§+l-l+iC+Cei7‘§d§=o (25)
1

¢ €2 4

1

e

+
> W)

When the log term is integrated by parts, equations (25) and (2k)
become, respectively,

— o]
2P 1 - e

f it +C Mg -
EINTE \/__+—1

-1 ¥ (26)

> |H|

= [ie Lo
B lr—‘_ : f i,———g et - (21)
inA
+ ; §2 + 1 + 1
Next make the substitution { = in to obtain

= [ L
-\ -
£ | r-e™M "dn-f L0 Mgy =1 (28)
A 0 2

Wl -1 o ,/l - n2

l - e dn + r——:—-—e"xndn =0 (29)

A Tlr—ﬂ o1 -l

The definite integrals occurring in equations (28) and (29) are
expressible in terms of known functions as follows:

P_2F
)

L-¢ =f‘>\ (s)ds
fnﬁ]—n oKO
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[+4]
=A
f _e__ﬂ__ an = K0(7\)
1 [nz -1 )

) -Kn
ne
—_——dy = K1(7\)
J:_ hz -1

where KO angd. K, are modified Bessel functions of the second kind.
Let

1 -
B(N) =f 1-eM™M an (30)
0

The funetion B(A) and its first two derivatives are expressible in terms
of the Struve functions of imaginsry argument Lo and I and modified

Bessel functions of the first kind Ip and I; as follows (see ref. 3):

A
B(A) = gj; [To(e) - Lo(e)]as

\

1 - t e'kﬂ S
B'(A) —L/; \/—]______-T]E dn = E[IOO\) Lo(7\)] > (31)
1 _xn
1 = ne = - s -
B"(A) fo -.-——-l = an = -1 + 2[11(7\) Ll(x)l

The first integrels of the modified Bessel functlions can be expressed as

A
[ Ko(s)ds
uUo

AL(A) + ’%Eomfu(%) - (N ()]
S (32)

NKo(N) + %E{O(x_)LlQ\_) + Kl(7\)Lo‘(7\):]

s
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Equations (28) and (29) may now be written

gfé - B'C =1+ B" (33)
TA

&? ]

1—‘-?:«/;\ Ko(s)ds + KoC = K (34)

(»e]
where, in equation (34), use has been made of the formula uf Kq(s)ds = gw
0

Equations (33) and (34) may be solved for C and P to give the following
results

X1 - (L+B") fm Ko(s)as
= A

C =

— (35)
BKq + B'f Kg(s)ds
A

Bl 1"
s _ %% K; + (L + B")Xp (36)

Ky + B jm Ko(s)as
A

Solutlion for broken stringer.- For the case in which the stringer is
broken at x = 0, the factor C must be replaced by C¥ obtained from
the solution to the boundary-velue problem appropriate for the broken
stringer. The solution to this problem 1s easlly obtained from the one
already given. It is only necessary to set P = 0 and drop the require-
ment @(0? = 0. The requirement @(i) = O is retained and leads to

3

equation (34) as before, except P = 0. Thus,
K
c* = L (37)
Xo

Computation of results.- Tables of the modified Bessel functions are
readily available. Values of the Struve functions Ly and L; may be

obtained from tables given in reference 4 for the range 0 S A £10 sat

A
intervals of 0.1l. No tables seemed to be available for JP Lo(s)ds;
0
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therefore, values of this function for valués of A S 2 were computed
from a power series. For values of A between 2 and 6, it was more con-
venient to compute the function B by numerical integration from the

formula /
n/2
B(A) =j; (1 - e™A Sin__e)s_i;l‘% (38)

which was obtained from equation (30} by an obvious substitution. For
values of A > 6, the function B was computed from the asymptotic
series

: 2
N i} SE_‘ Ll{(en - 1)! 1
B(A) ~ 7 + log 2A - 2 : n[(n I :l e (39)

which also was obtalned from equation (30) by well-known methods
(y = 0.57722 is Euler's constant). For the same values of A, the
function B' and B" were computed from the derivatives of equation (39).

Results of the computations for C, P, and C*¥ for A S 100 are
given in table I within slide-rule accuracy. The results are also plotted
in figures 3 to 5. For values of AN > 100, the following asymptotic
formulas give C, P, and C*¥ within slide-rule accuracy:

)

Crnl-—t
v + log 2A

A+ 0.875 (%0)
7 + log 2\ f

vl

~ L
2

%~ l 4 =
2N

NUMERICAL EXAMPLE

Consilder a sheet 0.1l inch thick reinforced by a stringer mede of the
seme materisl with an area of 0.5 square inch. A crack 6 inches long
extends 3 Inches on either side of the stringer. The effective radius of
curvature p, &t the tip of the crack is taken to be 0.002 inch.

According to a well-known formula, the theoretilcal stress concentration
factor KT at the tip of the crack is gilven by
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Kp=1+ 2/; 1+ 2 "0.002 78.6

In the present example,

-

?\ = A = 0.5 = 102
From table I,
¢ = 0.688
P = 1.593

The corrected stress concentration factor KT' at the tip of the crack
is thus

KT' = CKp = 0.688 x 78.6 = 5k.1

The stress concentration factor in the stringer is P = 1.593. The
Neuber stress concentration factor Ky for the crack, taeking slze effect

into asccount, is (see ref. 1)

Ky = %(1 + K'T') = 27.5

In practical epplications, of course, this large stress concentration
fector is considerably reduced when corrected for the effect of
plasticity. (See ref. 1 for details.)

DISCUSSION

Examination of figures 3 to 5 reveals at least two quelitative
features of the results which are of practicel interest. One is the
appreciable stress concentration in the stringer and the other is the
detrimental influence of the stringer once it has broken. These results
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confirm intuition. The stringer is expected to carry part of the

load refused by the sheet because of the crack. If then the stringer
breaks, the two intact halves of the stringer carry load into the region
of the sheet around the middle of the crack which tends to spread the
crack more than if there were no stringer.

Because of the idealizations made in obtaining the theoreticel solu-
tion, some caution should be observed in applying the results. In the
analysls the stringer is assumed to be continucusly attached to the sheet
along a line. In reality the stringer hes some finite width and may be
attached to the sheet by means of rivets. Thus the theoretical results
cannot be expected to be accurate for crack lengths shorter than two or
three tlmes the rivet spacing, or two or three times the wildth of an
integral stiffener.

Langley Aeronauticel Laboratory,
Natlonal Advisory Committee for Aeronsutics,
Langley Field, Va., December 23, 1957.
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TABLE I.- COMPUTED VALUES OF C, P, AND C¥

A c P cx A c P C*
0 0.637 1.000 o 1.7 0.699 1.806 1.265
.1 645 1.060 .06 1.8 .7OL 1.848 1.251
.2 .652 1.115 2.73 1.9 .703 1.889 1.239
.3 .658 1.168 2.23 2.0 .70k 1.930 1.228
A 662 1.219 1.960 3.0 .718 2.32 1.156
5 667 1.269 1.791 k.o .729 2.69 1.119
.6 670 1.%18 1.676 5.0 137 3.05 1.096
T 67k 1.366 1.590 6.0 LT 3.40 1.080
.8 677 1.413% 1.524 7.0 .750 3.73 1.069
.9 .680 1.459 1.h72 8.0 <755 4.06 1.061
1.0 .683 1.504 1.430 9.0 .59 4,38 1.054
1.1 .686 1.549 1.394 10.0 763 k.70 1.049
1.2 .688 1.593 1.365 15.0 LTTT 6.21 1.033
1.3 691 1.636 1.339 20.0 787 T7.64 1.025
1.4 693 | 1.679 1.317 30.0 .800 10.35 1.017
1.5 .695 1.722 1.297 50.0 816 15.40 1.010
1.6 697 1.76k4 1.280 100.0 834 27.0 1.005
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Figure 1.- Cracked sheet with a reinforcing stringer.
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Figure 2.- Free-body diagream of a segment of the stringer.
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Figure 3.- Variation with A of the ratio C of the stress concentra-
tion factors in & cracked sheet with and without & stringer for the

case in which the stringer is intact. A = i%};-
st
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Figure 4.- Variation of the stringer stress concentration factor P

2btE
with A = .
AEs-t




NACA TN k207 19

100
c"

10

~]
\
\\\
n\\
t
O.1 | N 10 100

Figure 5.~ Varietion with A of the ratio C¥ of the stress concentra-
tion factors in a cracked sheet with and without a stringer for the

cage in which the stringer is broken. A = %}E’—EE-
st
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